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Using the path integral approach to equilibrium statistical physics the effect of dissi-
pation on Landau diamagnetism is calculated. The calculation clarifies the essential
role of the boundary of the container in which the electrons move. Further, the derived
result for diamagnetization also matches with the expression obtained from a time-
dependent quantum Langevin equation in the asymptotic limit, provided a certain order
is maintained in taking limits. This identification then unifies equilibrium and nonequi-
librium statistical physics for a phenomenon like diamagnetism, which is inherently
quantum and strongly dependent on boundary effects. In addition we have shown that
our results are directly connected with fluctuation induced diamagnetic susceptibility
of superconducting grains.
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1. INTRODUCTION

Diamagnetism, which occurs as a result of the orbital motion of electric charges in
the presence of a magnetic field, is an old and well studied problem. It was shown
by Bohr and Van Leeuwen that when classical statistical mechanics are applied to
the calculation of the diamagnetic moment, the answer is identically zero.(1) Thus,
diamagnetism is an intrinsically quantum mechanical property, the treatment for
which was provided by Landau after the advent of quantum mechanics.(2) There
is an interesting issue of the role of the boundary within which the charges move,
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as was studied in depth by Van Vleck and Peierls.(3,4) While in classical statistical
mechanics the contribution to the diamagnetic moment arising from the orbiting
charges within the bulk of the container exactly cancels the contribution coming
from the boundary-currents, this cancellation is incomplete in the quantum case,
yielding a non-zero value of the diamagnetic moment. The boundary currents or
edge currents are also important in the context of the quantum Hall effect.(5) In an
earlier work,(6) referred here as I, we addressed the question of what happens to
diamagnetism when there is dissipation present. Because the diamagnetic moment
is proportional to the expectation value of the vector product of the operators
r and v, r being the position of the charge and v its velocity, the calculation
was set up as a transport problem, much like the celebrated Drude conductivity
of charge carriers.(7) Thus, the stationary form of the magnetic moment was
obtained from the asymptotic (i.e. time t → ∞) limit of the exact solution of an
underlying quantum Langevin equation (QLE) for r and v.(8) Naturally, the role of
the boundary had to be carefully assessed by first solving the QLE in the presence
of a confining boundary, then taking the t → ∞ limit for the diamagnetic moment,
and finally removing the boundary.

The QLE employed in I is in the spirit of the Caldeira Leggett model for which
the harmonic oscillators are viewed to constitute a quantum bath that defines the
temperature.(9) In this paper we present an alternative calculation of the diamag-
netic moment, which is now viewed as a thermodynamic property, derivable from
the derivative of the Gibbs partition function. Thus the full Hamiltonian compris-
ing the charged particle in a magnetic field, the harmonic oscillators and their
coupling, is treated in the canonical ensemble of equilibrium statistical mechan-
ics. For reasons mentioned earlier, a confining boundary has to be also included,
which is to be eliminated only after the derivative of the partition function is
computed. In the present calculation, the temperature T is that of an ‘invisible’
bath in which the canonical system is viewed to be embedded. While in I we
have considered only the ohmic dissipation in the Caldeira-Leggett model, both
non-ohmic and ohmic cases are treated here. Although it is not surprising that
the result derived here in the ohmic limit matches with the answer obtained in
I, that was based on a time-dependent Brownian motion approach,(10) dissipative
diamagnetism provides an elegantly pedagogical toy model within which equilib-
rium and nonequilibrium statistical mechanics can be holistically combined. We
may point out that the combined effect of dissipation and confinement on Landau
diamagnetism, the latter arising from coherent cyclotron motion of the electrons,
is particularly relevant in the context of intrinsic decoherence in mesoscopic
structures and fluctuation induced diamagnetic susceptibility and conductivity in
superconducting structures(11−13) in view of heat bath induced influence.(5,14)

With the preceding background we organize the paper as follows. In Sec. 2 we
discuss our model. Using the imaginary time path integral method, we reduce the
infinite dimensional action to an effective two dimensional action by integrating out
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the environmental degrees of freedom. The equilibrium magnetization is derived
in Sec. 3, wherein we also discuss the equivalence of our results with that of I
and their relation with fluctuation induced diamagnetic susceptibility. In Sec. 4 we
briefly describe the significance of our results and present some conclusions.

2. MODEL, FORMALISM AND EFFECTIVE ACTION

The starting point of I as indeed in this paper is the Feynman-Vernon(15)

Hamiltonian for a charged particle e in a magnetic field B:

H = 1

2M
ω2

0x2 + 1

2M

(
p − eA

c

)2

+
N∑

j=1

[
1

2m j
p2

j + 1

2
m jω j

2(x j − x2

]
, (1)

where the first term is the Darwin(16) term representing a confining potential to
recover the correct boundary contribution, p and x are the momentum and position
operators of the particle, p j and x j are the corresponding variables for the bath
particles, and A is the vector potential. We will work in the ‘Symmetric Gauge.’
The bilinear coupling between x and x j as envisaged in Eq. (1) has been the hall
mark of the Caldeira-Leggett approach to dissipative quantum mechanics.(9,17)

Further, it has been shown by Chang and Chakravarty that a fermionic heat bath
for electron-hole excitations near the Fermi surface, as appropriate for a metal, can
indeed be represented by bosonic operators, which are just the second quantized
forms of the harmonic oscillator variables of the Caldeira Leggett model, especially
when Ohmic dissipation is assumed.(18) Assuming the B field to be along the z-
axis, all the vectors in Eq. (1) can be taken to lie in the xy-plane. Thus, the vector
x has two components x and y etc.

Using the imaginary time path integral method we calculate the effective
Euclidean action. The partition function of the whole system is given by

Z =
∫

D[x]exp

[
−Ae[x]

h

]
, (2)

where Ae[x] is the effective Euclidean action and the functional integral is over
all periodic paths with period hβ. The free energy is then given by

F = − 1

β
lnZ . (3)

The important thermodynamic quantity, viz., the magnetization can easily be
obtained by taking the first derivative of F with respect to the magnetic field B,
applied along the z-axis:

Mz = −∂F
∂ B

. (4)
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Having laid down the background to the calculation of diamagnetism we
pose and answer the following question in this paper. Should we not be able to
calculate the equilibrium magnetization directly from Eq. (1) by following the
usual Gibbsian statistical mechanics in which all the terms in Eq. (1) are treated
on the same footing and there is no separation between what is a system and what
is a bath? If the answer to this question is in the affirmative and the resultant
magnetization matches with the result derived in I in the ‘equilibrium limit’ that
would indeed make the Brownian motion approach of I equivalent to the usual
statistical mechanics method.

Our method of calculation is based on the functional integral approach to
statistical mechanics which we find to be the most convenient tool for study-
ing charged particle dynamics in a magnetic field.(19−23) The canonical operator
exp(−βH) is related to the time evolution operator exp(− iHt

h ) by an analytic con-
tinuation procedure known as Wick’s rotation t = −i hβ. So in order to obtain the
Euclidean action we have to analytically continue to imaginary time τ = i t . The
Euclidean action corresponding to the Hamiltonian in Eq. (1) can be written as:

Ae =
∫ hβ

0
dτ [LS(τ ) + LB(τ ) + LI (τ )], (5)

where the subscripts S, B and I stand for ‘system,’ ‘bath’ and ‘interaction’ respec-
tively. The corresponding Lagrangians are enumerated as:

LS(τ ) = M

2

[
ẋ2(τ ) + ω2

0x2(τ ) − iωc(x(τ ) × ẋ(τ ))z

]
, (6)

where ωc = eB
Mc , is the cyclotron frequency,

LB(τ ) =
N∑

j=1

1

2
m j

[
ẋ2

j (τ ) + ω2
j x

2
j (τ )

]
, (7)

LI (τ ) =
N∑

j=1

1

2
m jω

2
j [x

2(τ ) − 2x j (τ ) · x(τ )]. (8)

Since the path x(τ ) has imaginary time periodicity x(hβ) = x(0), we can
perform imaginary time Fourier series expansion of system variables and bath
variables as follows:

x(τ ) =
∑

n

x̃(νn)e−iνnτ , (9)

�x j (τ ) =
∑

n

x̃ j (νn)e−iνnτ , (10)
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where the Bosonic Matsubara frequencies νn are given by

νn = 2πn

hβ
, n = 0,±1,±2, . . . . (11)

Using Eqs. (9) and (10) and following the detailed treatment given by Weiss(22)

the system-part of the action in terms of Fourier components is:

As
e = M

2
hβ

∑
n

[(
ν2

n + ω2
0

)
(x̃(νn) · x̃∗(νn)) + ωcνn(x̃(νn) × x̃∗(νn))z

]
. (12)

Further the combined contributions of the bath and the interaction terms to
the action can be written as:

AB−I
e = M

2
hβ

∑
n

ξ (νn)(x̃(νn) · x̃∗(νn)), (13)

where

ξ (νn) = 1

M

N∑
j=1

m jω
2
j

ν2
n(

ν2
n + ω2

j

) . (14)

Introducing the spectral density for bath excitations as:

J (ω) = π

2

N∑
j=1

m jω
3
jδ(ω − ω j ), (15)

we may rewrite

ξ (νn) = 2

mπ

∫ ∞

0
dω

J (ω)

ω

ν2
n(

ν2
n + ω2

) . (16)

Now, combining Eq. (13) with Eq. (12), the full action can be expressed as:

Ae = M

2
hβ

∑
n

[(
ν2

n + ω2
0 + νn γ̃ (νn)

)
(x̃(νn) · x̃∗(νn)) + ωcνn(x̃(νn × x̃∗(νn))z

]
,

(17)
where the ‘memory-friction’ is given by

γ̃ (νn) = 2

Mπ

∫ ∞

0
dω

J (ω)

ω

νn(
ν2

n + ω2
) . (18)

Note that x̃(νn) is a two-dimensional vector (x̃(νn), ỹ(νn)). Introducing then
normal modes:

z̃+(νn) = 1√
2

(x̃(νn) + i ỹ(νn))

z̃+(νn) = 1√
2

(x̃(νn) − i ỹ(νn)), (19)
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Equation (17) can be rewritten in a ‘separable’ form:

Ae = M

2
hβ

∑
n

[(
ν2

n + ω2
0 + νn γ̃ (νn) + iωcνn

)
(z̃+(νn)z̃∗

+(νn))

+(
ν2

n + ω2
0 + νn γ̃ (νn) − iωcνn

)
(z̃ (νn)z̃∗(νn))

]
. (20)

Equation (20) is the required effective Euclidean action.

3. FREE ENERGY AND MAGNETIZATION

In this section we employ the action given by Eq. (20) to first calculate
the canonical partition function and from it, the thermodynamic free energy. In
doing this calculation we tacitly assume a la Gibbs that the entire Hamiltonian,
described by Eq. (1), is embedded in a thermal bath that defines the temperature
of the system. This is in contrast to the QLE approach in I which assumes that it is
the subsystem alone, comprising the electron in a magnetic field, that is immersed
in a heat bath of quantum harmonic oscillators.
From Eq. (20) the partition function can be written as:

Z = 2π

Mβ

∏
n

[(
ν2

n + ω2
0 + νn γ̃ (νn)

)2 + ω2
cν

2
n

]−1
, (21)

where, we have used the definition of partition function as given in Eq. (2). In
view of Eq (3) the Helmholtz Free energy F can be deduced from Eq. (21) as

F = 1

β
In

(
Mβω4

0

2π

)
+ 2

β

∞∑
n=1

In
[(

ν2
n + ω2

0 + νn γ̃ (νn)
)2 + ω2

cν
2
n

]
, (22)

where the first term is independent of the magnetic field and owes its existence
purely to the Darwinian constraining potential. Equation (22) contains all the
thermodynamic properties, the most important of which is the magnetization
given by the negative derivative of F with respect to B:

Mz = −
∞∑

n=1

4
β B ω2

cν
2
n[(

ν2
n + ω2

0 + ν + nγ̃ (νn)
)2 + ω2

cν
2
n

] , (23)

thus yielding a manifestly negative magnetization, the hallmark of diamagnetism.
We conclude that the dissipative system of a charged quantum oscillator in an
external magnetic field is still diamagnetic. Equation (23) identically matches
with the asymptotic (t → ∞) limit of the expression obtained by Li et al.(8) from
a quantum Langevin equation formulation. Equation (23) can be recast in terms of
dimensionless parameters like ζ (= hγ̃ (νn )

2kB T ), νc(= hωc

2kB T ) and ν0(= hω0
2kB T ) as follows:

Mz = − B

kB T

(
eh

Mc

)2 ∞∑
n=1

1[
nπ + ν2

0
nπ

+ ζ
]2 + ν2

c

(24)
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The Eq. (24) of the present manuscript also yields the asymptotic result of I,
for ν0 = 0 (cf. Eq. (19) of I). We demonstrate this below, for ohmic dissipation,
since only the latter case was considered in Ref. I. In the so-called ohmic dissipation
model(9)

J (ω) = Mγω. (25)

Now Eq. (19) of I can be recast as follows:

Mz = |e|h
2Mc

{ ∞∑
n=1

4nπζνc(
ν2

c + ζ 2 − n2π2
)2 + 4n2πν2

c

(26)

+�
[

1

(νc − iζ )
− coth(νc − iζ )

]}
.

Note that the term inside the square parentheses is just the Landau contribu-
tion with however a complex cyclotron frequency with damping ζ as the imaginary
component. Over and above this is the further contribution, solely dependent on
damping, given by the first term (involving a summation over n) within the curly
brackets. Using the identity

coth(z) = 1

z
+

∞∑
n=1

2z

(z2 + n2π2)
, (27)

one can rewrite Eq. (26) as follows:

Mz = |e|h
2Mc

{ ∞∑
n=1

4nπζνc(
ν2

c + ζ 2 − n2π2
)2 + 4n2πν2

c

(28)

−�
∞∑

n=1

2(νc − iζ )

(νc − iζ )2 + n2π2)

}
.

After some algebra one can express Mz as

Mz = −|e|h
Mc

νc

∞∑
n=1

1

ν2
c + (ζ + nπ )2

, (29)

which equals Eq. (24) in the limit ν0 → 0.
It has often been felt, starting from the old Larmor theory of diamagnetism,(3)

that Mz ought to be simply proportional to the mean-squared electron radius, as
it connects to the square of the vector potential A occuring in the Hamiltonian in
Eq. (1).(12) In order to explore this connection, we now switchover to the calculation
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of the dispersion of position in equilibrium states which is given by

〈x2〉 = 1

Mβω2
0

+ 2

Mβ

∞∑
n=1

ν2
n + ω2

0 + νn γ̃ (νn)[
(ν2

n + ω2
0 + νn γ̃ (νn))2 + (νnω)2

] . (30)

From Eq. (30) it is evident that the mean square radius 〈x2〉 decreases mono-
tonically with the increasing strength of the dissipative factor (γ̃ (νn)). Combining
Eq. (30) with Eq. (23) we obtain

Mz = − 2B

Mc

[
〈x2〉 − 1

Mβω2
0

− 2

Mβ

∞∑
n=1

ω2
0 + νn γ̃ (nn)[

ν2
n + ω2

0 + νn γ̃ (νn))2 + (νnωc)2
]
]

.

(31)
Even after ignoring the classical equipartition term (i.e. the first term on the

right of Eq. (30)) we find that Mz in magnitude is further decreased from 〈x2〉 by
a nontrivial damping dependent term given by a summation over n. This implies
actually an increase beyond the value of 〈x2〉, in view of the overall positive sign
in front of the sum over n. The origin of this additional contribution may be
traced to the fact that the treatment provided above is an exact one, including the
linear term in A. Be that as it may, the decrease in magnitude of diamagnetization,
as the damping increases, may be interpreted to be due to the squeezing of 〈x2〉
due to dissipation. Thus the present effect is related to how dissipation diminishes
the fluctuation induced diamagnetic susceptibility (above Tc) of superconducting
grains.

One can also re-express the equilibrium dispersion Eq. (30) in terms of
dimensionless parameters ζ, νc and ν0

〈x2〉 = h2

4MkB T

⎡
⎣ 1

ν2
0

+
∞∑

n=1

1 + (
ν0
nπ

)2 + ζ

nπ[
nπ + ν2

0
nπ

+ ζ
]2 + ν2

c

⎤
⎦ (32)

Now to make our theoretical analysis more accessible and more interesting we
numerically plot our main results i.e Eq. (24) and Eq. (32). We consider both the
frequency dependent and independent damping cases i.e both nonohmic (J(ω)∼ω3)
and ohmic (J(ω)∼ω) dissipation. We plot in Fig. 1 magnetization Mz versus
dimensionless damping parameter ζ for different values of νc in accordance with
Eq. (24). It is seen that Mz monotonically approaches zero for large value of ζ

although this approach is slower the larger νc is. A large value of νc gives strong
quantum effect which ultimately gives classical like effects when dissipation ζ

is strong. In Fig. 2 we plot equilibrium position dispersion versus ζ for different
values of νc. Here 〈x2〉 decreases monotonically to zero for large value of ζ

although the behavior of 〈x2〉 is different from Mz .
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Fig. 1. Plot of 2kB T
B ( Mc

e h )2Mz versus the damping parameter ζ for both ohmic (J(ω)∼ω) and nonohmic
(J(ω)∼ω3) cases.

4. SUMMARY AND CONCLUSION

Equation (23) embodies several intriguing results which deserve special com-
ments: (1) Diamagnetic susceptibility in small particles is proportional to the mean
squared radius 〈x2〉 of the charged particles in the grain; 〈x2〉 is squeezed due to
dissipation and hence fluctuation induced diamagnetic susceptibility of super-
conducting grains also decreases. This is an important message of the present
work. (2) It has often been seen that although the approach to equilibrium does
depend on relaxation parameters such as damping, the equilibrium results them-
selves are independent of such parameters.(24,25) The diamagnetization is one of
the rare equilibrium properties which depends directly on the damping parame-
ter γ that characterizes the dissipative dynamics of the underlying Hamiltonian.
The reason is, like in the much studied problem of quantum dissipation of a har-
monic oscillator,(26) the system-bath coupling is so strong that it needs an exact
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Fig. 2. Plot of equilibrium position dispersion 〈x2〉 in unit of h
2

4MkB T for both ohmic (J(ω)∼ω) and

nonohmic (J(ω)∼ω3) dissipation cases.

treatment. Thus the degrees of freedom of the entire many body system are in-
exorably entangled with each other and therefore, it is no longer meaningful to
separate what is a system from what is a bath. In this context we should men-
tion that the derivation of Boltzmann distribution exp(−βH) only works in the
limit of vanishing interaction strength(27) and indeed this has been discussed for
the Caldeira-Leggett model by Benguria et al.(28) But ours is a calculation in
which the system-bath interaction has been treated exactly. (3) Diamagnetism as
a material property is seen to have components of thermodynamics and transport
phenomena. The thermodynamic nature of the property is rooted on its being able
to be calculated from the free energy, as shown here. On the other hand, diamag-
netism, like the Drude conductivity,(7) is also based on transport mechanism in that
it is related to the expectation value of the operator (r × v) (see I). (4) Normally, in
statistical mechanics, a thermodynamic limit is taken as a result of which surface
contributions to bulk become irrelevant. However, for diamagnetism the surface
enters crucially, as argued above; even though, there are fewer surface electrons
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than in the bulk, their contribution to the operator r in (r × v) is substantial. A
remarkable feature of diamagnetism is the need to first calculate the magnetization
in the thermodynamic limit and then switch the boundary off i.e. by setting ω = 0.
Because for a mesoscopic system surface effects are non-negligible, the present
study has a bearing on our understanding of mesoscopic structures. (5) Finally,
it has been argued by Jayannavar and Kumar,(29) not only is there no classical
diamagnetism—due to the Bohr-Van Leeuwen theorem—there is no dissipative
classical diamagnetism either. Thus, the time-dependent, classical diamagnetiza-
tion relaxes to zero, a damping-independent result. Therefore, we emphasize once
again that the appearance of damping terms in equilibrium answers, as discussed
under points (2) and (5), is an intrinsically quantum aspect.
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